

IV B. Tech I Semester II Mid-Term Examination (2021-22): Descriptive

Branch: CSE

Sub:INFORMATION SECURITY

Sub Code: 15A05702

Time: 90 Minutes Date: 01-02-2022

Max marks: 30

Answer any three questions. All questions carry equal marks 3*10=30							
1) A) Explain in detail about SHA Algorithm?	CO3	L2					
B) Describe in detail about HMAC?	CO3	L2					
2)A) Explain in detail about Kerberos?	CO4	L2					
B) Describe in detail about public key infrastructure?	CO4	L2					
3) A) Write about message AuthenticationRequirements?	CO5	L1					
B) Explain about message Authentication functions?	CO5	L2					
4) A) Write short notes on S/MIME?	CO5	L1					
B) Write Short Notes on Pretty Good Privacy and User Authentication?	CO5	L1					
5) A) What is SSL?Explain about SSL Protocols?	CO3	L2					
B) Define terms i) TLSii) HTTPSiii) SSH?	CO3	L1					

SANSKRITHI SCHOOL OF ENGINEERING, PUTTAPARTHI

IV B. Tech I Semester II Mid-Term Examination (2021-22): Descriptive

Branch: CSE Sub:INFORMATION SECURITY Sub Code:15A05702

Time: 90 Minutes Date: 01-02-2022 Max marks: 30

Answer any three questions. All questions carry equal marks 3*10=30

- 1) A) Explain in detail about SHA Algorithm?
 - B) Describe in detail about HMAC?
- 2) A) Explain in detail about Kerberos?
 - B) Describe in detail about public key infrastructure?
- 3) A) Write about message Authentication Requirements?
 - B) Explain about message Authentication functions?
- 4) A) Write short notes on S/MIME?
 - B) Write Short Notes on Pretty Good Privacy and User Authentication?
- 5) A) What is SSL? Explain about SSL Protocols? B) Define terms i) TLS ii) HTTPS iii) SSH?

Principal

Sanskrithi School of Engineering
Beedupalli Road, Presenthingram,
PUTTAPARTH: - 515 134.

Anantapuramu (Dt) A.P.

IV B TECH (I SEM) I MID - TERM EXAMINATIONS (2021-22) DEC 202 BRANCH: CSE SUBJECT: IS (DESCRIPTIVE) SUB.CODE: 15A05702

Date: 03/12/2021

Time: 90min

SUB.CODE: 15A05702 MAX.MARKS:30

SET-1

Answer Any Three Questions. All Questions carry equal marks

1) A) Explain in detail about play fair cipher with example?	CO1	L2
B) Plain text is "INFORMATION" and the key is 4 to find out encry	ption and decr	yption
using Caesar cipher?	CO1	L3
2) A) Explain in detail about OSI Security architecture?	CO2	L2
B) Explain in detail about transposition cipher?	CO2	L2
3) A) Describe in details about security attacks?	CO1	L2
B) Explain in detail about symmetric cipher model?	CO1	L2
4) A) what is block cipher and write principles of block ciphers?	CO2	L1
B) define terms i) encryption algorithm ii) decryption algorithm iii)	secret key iv) ii	nformation
Security v) security mechanism	CO2	L1
5) A) Explain Euclidean algorithm with example?	CO1	L2
B) Explain in detail about modular arithmetic?	CO1	L2

Principal
Sanskrithi School of Engineering
Beedupalli Road, Precauthingram.
PUTTAPARTHI - 515 134.
Anantapuramu (Ot) A.P.

IVB. Tech I Semester II Mid-Term Examination (2021-2022): Descriptive SET A

Branch: ECE

Sub: RADAR SYSTEMS

Sub Code: 15A04705

L1

Time: 90 Minutes

Date: 02/02/2022

Max marks: 30

Answer any three questions. All questions carry equal marks (3x10=30 marks)

1.(a) Explain the principle of operation of MTI radar with power oscillator transmitter with	a neat blo	ock diagram?
L2	Co3	L2

(b)Discuss about blind speeds?L2

2. Explain the operation of amplitude comparison monopulse tracking radar with the help of a block diagram? Co4 L2

3. Establish the impulse response characteristic for a matched filter? Co₅

4. With a neat diagram explain the operation of a conical scan Radar. Explain the various factors that need to be considered for optimum squint angle? Co4 L2

5. (a) Explain the basic concept of phased array antennas? Co₅ L2

(b)Explain characteristics of different radar displays?L2

Beedupalli Road, Presenthingram. PUTTAPARTHI - 515 134.

Anantapuramti (Dt) A.P.

SSE

SANSKRITHI SCHOOL OF ENGINEERING, PUTTAPARTHI

IV B. Tech I Semester I Mid-Term Examination (2021-2022): Descriptive SET A

Branch: ECE

Sub: RADAR SYSTEMS

Sub Code: 15A04705

Time: 90 Minutes

Date: 04/12/2021

Max marks: 30

Answer any three	questions. All question	s carry equa	marks	(3x10=30 marks)

	ALLES AND	
1. Explain about Radar block diagram and operation?	Co1	L2
2. (a)Derive the basic radar range equation?(b)List out and explain any two system losses	Co2	L5
3. Explain about receiver bandwidth requirements in CW radar?	Co2	I.2
4. Discuss probability of false alarm and probability of detection with necessary equations?	Co ₂	L2
5. (a)Explain range and doppler measurement in FM-CW radar?	Co 1	L2
(b)Explain FM-CW Radar Block diagram?		

Sanskrithi School of Engineering Beedupalli Road, Prasanthingram, PUTTAPARTHI - 515 134. Anantapuramu (Dt) A.P.

IV B. Tech I Semester II Mid-Term Examination (2021-22): Descriptive Type Branch: Mechanical Sub:AE Sub Code:15A03701 Max marks: 30

Time: 90 Minutes Date:

Time: 70 Minutes Date:		
Answer any three questions. All questions carry equal marks.(3*	10 = 30)	
Discuss in details the Ackerman steering system	Co3	L2
2. Draw a simple diagram to show the layout of drum and disk brake system	Co4	L1
3. discuss the details the basic suspension systemand universal join	Co5	L2
4. Explain about Hotch kiss and epicyclic gear box	Co3	L2
5. Explain about steering geometry. 1) camber 2) castor 3) Toe in and to Toe	ou Co5	.L2

Sanskrithi School of Engineerian
Beedupalli Road, Prasanthingram
PUTTAPARTHI - 515 134.
Anantapuramu (Dt) A.P.

IV B. Tech I Semester I Mid-Term Examination (2020-21): Descriptive

TypeBranch:Mechanical

Sub:AE

Sub Code:15A03701 Max marks: 30

Time: 90 Minutes

Date:

Answer any three questions. All questions carry equal marks. (3*10 = 30)

1. With the help of a neat sketch explain the construction and working of a multiplate clutch.L2

Col L2

2. What is chassis? What are the components of a chassis? Indicate their function sCo2 L2

3. With the help of a neat sketch explain splash lubricating system

Co₁ L₂

4. Draw schematic diagram, showing the layout of compete transmission system of a four wheeler automobile.

Co1 L1

5. What is the function of propeller shaft? Briefly the construction of propeller shaft Co2 L3

Sanskrithi School of Engineering
Beedupalli Road, Presantha PUTTAPARTHI - 515 134.
Anantapuramu (DI) A.P.

SANSKRITHI SCHOOL OF ENGINEERING, PUTTAPARTHI 4TH B. Tech I Semester - II Mid-Term Examination (2021-22): Objective

Sub: PSOC Sub Code: 15A02502 **Branch: EEE** Max marks: 10 Time: 20 Minutes HT N NAME: Invigilator Signature:

ANSWER THE FOLLOWING QUESTIONS. EACH QUESTIONS CARRY 1/2 MAI	₹K. ($20x^{\frac{1}{2}} = 1$	0 Marks)
	ſ	1	
1.Two main controlling loops in generating stations are a) ALFC b) AVR c) Both a & b d) None	ι	J	
	r	1	
2. The frequency is normally varying about between light and full load a) 10% b) 5% c) 4% d) 2%	L	1	
a) 10% b) 5% c) 4% d) 2% 3. If two areas were interconnected the steady state frequency error is	Г	1	
a) Reduced by 50% b) reduced by 25% c) increased by 50% d) increased by 25%	L	,	
4. When an inter connected power system operates with a tie-line bias they will respond to	ſ	1	
a) frequency changes only b) both frequency & tie line load changes c) tie line load change	s onl	v d) none	
5. For a two area system the damping of frequency is high with	٦	1	
a)high R b) low R c) R=alpha d) none	L		
6. Sub-synchronous resonance is considered astype of phenomenon	ſ	1	
a)electrical b) mechanical c) electrical &mechanical d) damped frequency resonance	L	•	
7). Zero steady state error in frequency is obtained by	ſ	1	
a) Proportional controller b) integral controller c) proportional plus integral controller	L	,	
d) adding a capacitor in any phase			
8). Load frequency control is achieved by proper matching of the individual machines	ſ	1	
a) Reactive powers b) generated voltages c) turbine inputs d) turbine and generator ratings	Ľ	,	
9). The power system is stable if	Г	1	
a) The synchronizing power coefficient is positive b) The synchronizing power coefficient is	s ne	zative	
c) The synchronizing power coefficient is positive or negative d) none			
10. Which of the VAR compensators can be used for both heavy and light load conditions	ſ	1	
a) SVC b) shunt capacitor c) shunt reactor d) series capacitor	•		
11.Shunt capacitor compensation at load bus	ſ	1	
a)improves system frequency b)improves system voltage			
c)reduces Ferranti effect d)absorbs reactive power			
12. The changes in Reactive power at a bus have a great effect on the voltage magnitude	ſ	1	
a)of that bus b) of all the bus c) of distant buses d)none of the above	•		
13. For a good voltage profile under load condition a long line needs	1	1	
a)shunt capacitors at receiving end b) shunt reactors at receiving end		,	
c) shunt resistance at receiving end			
14. For a good voltage profile under no load condition a long line needs	[1	
a)shunt capacitors at receiving end b) shunt reactors at receiving end	-		
c) shunt resistance at receiving end			
15. Difference between spot price & future price at any specified time is	[1	
a) short term price b)basis c) market clearing price d) basis risk		-	
16. The range of substitutes for its commodities are more in demand	[1	
a) inelastic demand b)elastic demand c) both a & b d) none	_		
17. Deterioration in the cost of electricity generating resources due to restructuring of power in	ıdust	ry is know	as a) power
exchange b)stranded cost c) transmission pricing d) market power []		
18assures the stability of power system and the quality of the service	[]	
a) power exchange b)ISO c) both a & b d) none			
19. The congestion which primarily occurs on transmission interfaces between congestion zon	cs is	known	
as	[]	
a) inter zonal b)intra zonal c) congestion revenue d) none			
20. Objective of market operation	. []	
a) secure operation b)economic operation c) both d) none			
\ \ \ -1.		N	

sanskrithi School of Engineering Beedupalii Road, Prasse PUTTAPARTHI - 5 Anantapura mentilika

SANSKRITHI SCHOOL OF ENGINEERING, PUTTAPARTHI
4th B. Tech I Semester – II Mid–Term Examination (2021-22): Descriptive
Sub: PSOC

SET-1 Branch: EEE Time: 90 Minutes

Sub Code: 15A02702

Max marks: 30

Time. 90 Windles	IVICIA	Hai Ks. S	U
Answer any three questions. All questions carry equal marks (3X10 = 30	marks)	-	
11. With a neat block diagram explain the load frequency control			
with economic dispatch control.	CO ₃	L2	
2. Draw the block diagram of proportional plus integral controller			
and show the steady state frequency error?	CO4	L2	
3. Explain the load frequency control of two-area			
interconnected by a Tie line with a neat block diagram.	CO5	L2	
4. List out different reactive power compensation device			
. Explain briefly about them.	CO4	L2	
5.(a) Explain the concept of inter zonal/intra zonal congestion management with example?	CO5	L2	
b) Explain the role and objectives independent system operator?			

Sanskrithi School of Enginecting
Beedupalli Road, Prasorthingsain
PUTTAPARTHI - 875 184.
Anantapuramy (0, 182)

SANSKRITHI SCHOOL OF ENGINEERING, PUTTAPARTHI 4TH B. Tech I Semester - I Mid-Term Examination (2021-22): Objective

Sub: PSOC Branch: EEE Time: 20 Minutes NAME:

Invigilator Signature:

Sub Code: 15A02502 Max marks: 10

HT NO:

A NOWED THE FOLL OF THE		
ANSWER THE FOLLOWING QUESTIONS. EACH QUESTI	ONS CARRY 1/2 MARI	$\frac{1}{1}(20x^{\frac{1}{2}} = 10 Marks)$
1.Equality constraints are		1
a) Generator constrains b) Current constraints c) Magnetic constraints	d)none of the above	J
2. Heat rate curve is defined as	r	1
a)Fuel i/p to the power o/p b)Power o/p to the fuel i/p c)Both d)none of	f the above	1
3. The penalty factor	[]	
a) Is always less than 1. b) is always more than 1 c) may be more or less	sthan 1d) is equal to 1 or	less than
4. The fuel cost is included in		ioss than.
a)Annual fived cost b)Annual operating cost c)Both (a) & (b) d)No	ne L J	
5. The cost function of a generating station being a quadratic equation to	he incremental fuel cost	expression []
d) unpredicta	ble	expression [
6. Which power plant need the least period for installation	1	1
a) diesel power plant b) thermal power plant	ant	J
c) Nuclear power plant d) hydro-electric now		
7. The largest size of thermal generating unit in India is	[]	
a) 500 MW b) 310 MW c) 210 MW d) 16	5 MW	
8. The optimum allocation of generation to each station for system load	l level is called []	
a) Load dispatching b) load scheduling c) Unit commitm	ent d) none	
9. The main economic factor in power system operation is	1	1
a) The cost of reactive power compensation b) the cost of	power generation	•
c) The cost of operation and maintenance d) the cost of	power transmission	
10. The cost function of generating station being a quadratic equa	ation the incremental fu	el cost expression will l
L I		or o
a) Linear b)non linear c)parabolic d)none		
11. The units of Incremental cost is		
a)Rs per Mwh b)Rs per Mw c)Rs hour d)Rs		
12. Hydro plant is example for	[]
a) Base load b) peak load c) high load d) average load		
13. When compared to thermal plant the operating cost & capital cost	of hydro electric plant is	
	th low [1
14. The optimum scheduling in case of thermal plants is]
a) static b)dynamic c) both a & b d) either a or	ъ	
15. In a power system are continually changing	[]
a) Pg & Qg b)Pd & Qd c)V & delta d) All		
16. Real power balance will control the variations in]
a)voltage b)frequency c)both d)no		
17. The objective function to the optimization problem in a hydrotherm	nal system becomes	
a) Minimum fuel cost of thermal plants b) Minimum time of opera	ition []	
c) Maximum water availability for hydrogenation d) All of these		
18. Hydro generation is a function of	L I	
i) Water head ii) Water discharge iii) Rainfall iv) Water infl	ow	
Out of the above a) i & ii are correct b) i, ii, & iv are correct		V
c) all are correct d) ii & iv are correct		
19. Hydrothermal coordination is necessary only in countries with	1) 37	
a) Ample coal resources b) Ample water resources c) Both a & b 20. The highest ac transmission ac voltage used in India is	a) None	
a)220Kv b) 400Kv c)750 Kv d) none		
a)220Kv b) 400Kv c)750 Kv d) none		↑ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
heel of En	(De Worter C	\sim
S. S. S. L.	Principal	
a)220Kv b) 400Kv c)750 Kv d) none	nchrithi Cahasi in	
KF E	nskrithi School of En	ymeann
# 5\ /*/	uupalli Road, Pepenn	
	- MEARINI - 516	
	Anantapuramu (**)	

4th B. Tech I Semester – I Mid–Term Examination (2021-22): Descriptive Sub: PSOC

SET-1 Branch: EEE
Time: 90 Minutes

Sub Code: 15A02702 Max marks: 30

Answer any three questions. All questions carry equal marks (3X10 = 30 marks)

1. A constant load 400 MW is supplied by two 210 MW generators 1 and 2 for which fuel cost characteristics are given as below

 $C_1=0.05P_{G1}^2+20P_{G1}+30.0 \text{ Rs./hr}$

 $C_2=0.06P_{G2}^2+15P_{G1}+40.0$ Rs. /hr

The real power generation of units P_{G1} and P_{G2} are in MW. Determine (i) the most economical load sharing between the generators. (ii) The saving in Rs. per day there by obtain compare to the equal load sharing between two generators.

A load is feeded by two plants, one is thermal and the other is a hydro – plant. the load is located near the thermal power plant as shown in fig. the characteristics of the two plants are as follows:

 $C_T = 0.04P_{GT}^2 + 30P_{GT} + 20 Rs./hr$

 $W_H = 0.0012P_{GH}^2 + 7.5P_{GH}m^3/s$

 $\gamma_{\rm H}=2.5{\rm X}10^{-5}{\rm Rs./m}^3$

the transmission loss co-efficient is $B_{22}=0.0015 MW^{-1}$. Determine the power generation of both thermal and hydro plants, the load connected when $\lambda=45 Rs./Mwh$

and hydro plants, the load connected when λ=45Rs./Mwh

Explain the following 1. Cost curve 2.heat rate curve 3. Input and output characteristics

CO2

L2

Derive Equation for Economic dispatch of thermal units without losses

CO1

L3

5 Explain the optimization problem and Derive the equitation of speed governing system CO2 L2

Beedupalli Road, Prass othingram,
Anantapuramu (Dt) A.P.

Branch: CIVIL

SANSKRITHI SCHOOL OF ENGINEERING, PUTTAPARTHI

IV B. Tech I Semester II Mid-Term Examinations: Descriptive
Sub: Finite Element Method Sub Code: 15A01701

Time: 1:30 Hours Max marks:30

Answer any three questions

Derive the Jacobian matrix, strain displacement matrix and stiffness matrix for a 2-D 4-noded iso-parametric quadrilateral element.

Co3
L5

2. Consider a quadrilateral element as shown in figure the local coordinates are $\varepsilon = 0.5$ and $\eta = 0.5$, evaluate the jacobian matrix and strain displacement matrix.

- 3. The nodal co ordinates for an axi symmetric triangular element are given below: Co4 L5 r_1 = 20mm, r_2 = 40mm, r_3 =30mm, z_1 =40mm, z_2 = 50mm, z_3 = 60mm. Evaluate the [B] matrix.
- 4. a) The nodal co-ordinates of a constant strain triangular element are (in cm); 1(2,2), 2(4,3) and 3(3,6). Derive the strain-displacement matrix.

 Co5 L5
 - b) Derive the strain-displacement matrix and shape functions for a CST element.
- 5. Explain briefly about the shape functions of 4 node rectangular parent element by using natural co ordinate system & co ordinate transformation.

 Co3 L2

Principal
Sanskrithi School of Engineers
Beedupalli Road, Prasanti
PUTTAPARTHI - 5 10 15
Anantapuramu (DD 1)

SANSKRITHI SCHOOL

2			VB.	Tech I	Sem	estar		id_T	00 000	LUF	ENG	IINE	ERIN	NG,F	TU	TAP	ART	ГНІ
	Branch	: CIVII	L L	Tech I	Sub:	Finit	e Fla	men	erm + Ma	Exami thod								
Γime: :	20 minut		_		Jub.		LE LIE	men	tivie	tnod	Sub	Code	e: 15 <i>A</i>	10170)1			
NAME												_						
	ure of th	e invi	ailat.	~ .				Н	l. No	:								
												ſ	Max n	narks	: 10			
nswer 1.	In two	Tions. Timen	Each cions	l Ques	tions	Carr	y 0.	5 Mar	rks									
		merica	ol inte	1 Isopa Paratio	rame	ric ei	emer	1ts, w	e can	gener	ate ele	ment	stiffn	ess m	atrix	by usi	ng[]
2.	a) Nur	tor a=	:[a. (zgratioi n.	11 0) 1	oller	enua Fo for	i equa	ations	s c) Pa	rtial de	erivati	ves d)	Und	efine	d		
	a) Loa	id vect	tor h	Tranc	······································	motri	la lo	ur no	aea q	uadrila	ateral o	denote	es				[]
3.	For a fo	ur noc	led a	uadrila	iteral	we d	lefine	chan	ent ai	spiace	ment v	ector	d) Co	nstan	t mat	rix		
	a) X d	irection	on b)	Y dire	ction	c) I c	ad v	ector	a) M	octor o	on		_				[]
4.	The mas	ster ele	emen	t is de	fined	in	Juu V	ccioi	u) IVI	asici e	iemen	ι					_	_
	a) Co-	ordina	ites b) Natu	ral co	o-ordi	nates	c) II	niver	sal co	ordina	ton d)	Dad:				Ĺ]
5.	Shape for	unctio	n car	be wr	itten	as		0,0		sai co-	oruma	iics u)	Kadii	18				
	a) Nt=	$-(1-\xi)($	1-η)	b) Nt=	- (1-ξ)	c) Nt	t=(1-	m) d)	Nt=	¼ (1-X	:)(1_n)	`					[]
6.	In mathe	ematic	al m	odellin	ig of a	a proc	cess,	which	ı opti	on is r	ot a cl	, haract	eristic	ofan	anal	lutical	colm	
	u) iviai	uiciiai	lical	equanc	ons ar	re use	a to c	iescri	be a	proces	s	iaiaoi	0110110	or an	ana	lytical	r	1011?
	b) Mos	st prac	ctical	proble	ems ca	annot	be so	olved									ι	J
	c) Exa	ct info	ormat	tion on	the q	quanti	ities c	of inte	rest i	s obta	ined							
~	d) Fini	ite elei	ment	metho	d is u	ised												
7.		ur nod	ed q	uadrila	teral	eleme	ents,	in u ^T =	=[u.v]	Tthe d	lisplac	ement	elem	ents c	an be	e repre	esente	ed as
	a) N =	q_1	<i>q</i> 5	1			_			$C \supset$		_						•
	a) N=	q2 (96	b) N=	q1	q3	q5	q7	c) N	q1	d) N=	N1	0	N3	0	N5	0	N
		<i>q</i> 5 (97	(qz	q4	q6	ر q8	-) ~	$\left[q^{2}\right]$	۵) 1 (L0	N2	0	N4	0	N6	0
8.	The stiff	fness r	natri	x from	the a	madri	laters	al eler	mant	oon bo	domina	ad Eur						
	a) Unit	form e	nerg	v	b) Sti	rain e	nerov	11 CICI	Hent	call be			n) Disp				[]
9.	For four				ral el	emen	t. the	globa	al loa	d vect	or can	he de	<i>j</i> Disp Jermir	nacen	lent	oidori.	a ~ 41a.	7
	body for	ce ten	m in				.,	B. 000		u voor	or cuit	oc ac	CHIIII	ica by	COIL	siderii	ıg ıne	ะ ำ
	a) Kine				b) Po	 tentia	ıl ene	rgv		c) Kin	ematic	enero	rv	d) T	emne	erature	, L	J
10.	Eight-no	de Qu	ıadril	ateral.	This	elem	ent be	elong	s to t	he	fam	ily of	eleme	ents.	cmp	nature	r	1
	a) Sere	endipi	ty b)	Const	ant m	ıatrix		c) L	oad v	vector	d) M	laster	eleme	ent			ι	1
11.	N ₁ , is of	the fo	rm _		_												Γ	1
	a) Co-c			1	b) N _I	=c(1-	-ξ)(1-	-П)(1-	+ξ+η)	c) N	1=(1-	ξ)(1-Γ	D		d) N ₁ =	= (1-E	
12.	Six node	: triang	gular	elemen	nts is	also l	know	m as .									ĺ	"
	a) Tria	ngle	b)	Quadr	ratic to	riangl	le	c) It	nterp	olation		ď	Shap	e fun	ction		•	•
13.	In six no	de tria	ıngul	ar elen	nent,	the ga	auss j	points	s of a	triang	ular el	emen	can t	e def	ined	by	[]
	a) Two) Unde	efined						
14.	The noda																[]
	a) Unif	orm e	nergy	/b) Str	rain e	nergy	/ c) N	lumer	rical 1	Integra	tion d) Disp	lacen	ent				
15.	The gaus	s poin	its fo	r a tria	ngula	ır regi	ion d	isser s	rom	the	_ regio	n. []					
1.0	a) Rect										_							
	In a nine																[]
	a) Shap																	
	Beams as a) True				ibers	used	ior s	uppor	ting	transve	erse lo	ading.					[]
	•		,	False	c	£		1	- 24	'al C.							r	
	The total							ı a be	am v	iin foi	ar nod	cs 18 _		-•			L]
	a) Four							ntam	alat-	d vala							r	1
	The displ											A ala	ma C-	atam			L]
	The shap			for in	ij sila ternol	pe IIII Istian	IICHO	us c)	alam	e parai	neters a data	u) sna aal aa	ipe ia	ciors	\£	}	_r	1
	0 to			1 to 0	crpo			eam (ents ar l) -1 to		ica e	(d)	o la	TAL	-K	9	1
hoo	01		<i>0 j</i> -	1 10 0									V1	J.V.	HICH	gal		
,,,,,,,	(1)					**	***	* 4 1	LT	не в	EST*	****	***1.5	Col.	nol	of En	ain	co-
	10%	13						741			EDIO IL	ansl	THE	1 2011	OVI	A. C. M. C.		

Beedupalli Road, Prasonthic PUTTAPARTHI - 515 134. Anantapuramu (01) A.P.

Branch: CIVIL

SANSKRITHI SCHOOL OF ENGINEERING, PUTTAPARTHI

IV B. Tech I Semester I Mid-Term Examinations: Descriptive

Sub: Finite Element Method Sub Code: 15A01701

Max marks: 30

Time: 1:50 Hours

Answer any three questions

1. Define Finite Element methods. Explain briefly about the general steps of the finite element methods.

- 2. Explain briefly about the following: a) Artificial Discretization b) Natural Discretization.
- 3. A steel bar of length 1000 mm is subjected to an axial load of 4.5 kN with four dividing parts of bar. Find the elongation of the bar, neglecting self weight. Take $E = 2X10^5 N/mm^2$, $A = 450 mm^2$.
- 4. A Beam of AB of span L simply supported at ends and carrying a concentrated load of W at the centre of C, Determine the deflection at mid span by using Rayleigh-ritz method and compare with exact solution.
- 5. The differential equation of a physical phenomenon is given by,

 $d^2y/dx^2 + y = 4x$, $0 \le x \le 1$, Boundary conditions are y(0) = 0, y(1) = 1

Obtain one term approximate solution by using Galerkins method of weighted residuals.

Sanskrithi School of Engineering
Beedupalli Rood, Prasent Ingram,
PUTTAPARTHI - 515 134.
Anantapuramu (Dt) A.P.

Calendary Children's brook and		h I Semester IN p:Finite Elemen	Mid–Term Examin		e:15A01701
Branch: CIVIL	Sun	Finite Elemen	it Method	Sub Couc	.13A01701
Time: 20 minutes NAME:			H. No:		
Signature of the in	vigilator:		Max marks: 10		
Digitature or the in	, I games of				
			hQuestions Carry 0.5		/
	ure is divided into dis		olumes then it is calle	ed an	[]
a) Structur	re b) Element ment modeling nodal				[]
a) Surface	b) Shape	c) Eigen values	s d) Matrix		. ,
3. In finite eler	nent modeling every	element connec	ts to	_	[]
a) 4 nodes	b) 3 nodes	c) 2 nodes	d) Infinite no of no	odes	rı
4. In one dimer	nsional problem, eac es of freedom	th node has	degrees of ir	reedom.	[]
	rees of freedom				
5. One dimensi	ional element is the l	linear segments v	vhich are used to mo	del	[]
a) Bars and	d trusses b) Plate	es and beams	c) Structures d) Solids	r 1
6. Modeling is	defined asal area with uniform	aross sostion			[]
a) Element	al area with non unit	form cross section	n		
	al area with uniform				
	uctural area with nor				r 1
7. Discretization	on includes and node b) Only	number	ing.	er nodal or elementa	[] 1
8. Principle of	minimum potential e	energy follows di	rectly from the princ	iple of	[]
a) Electic e	margy h) Virt	ual work energy	·/·		
c) Kinetic	energy d) Pote	ntial energy			r 1
9. The points at	t where kinetic energ	gy increases dram	natically then those p	oints are called	[]
a) Stable ed	quilibrium points ium points	d) Unique poin	imorium pomis		
10. We can obtain	in same assembly pro	ocedure by Stiffr	ess matrix method a	nd	[]
a) Potential	l energy method approach	b) Rayleigh me	thod		
c) Galerkin	approach	d) Vector metho	od our method of solvi	na simultaneous ear	nation by successively
11. Gaussian elii eliminating	nination is a name g	iven to a wen kn	Own method of solvi	ing siniaitaneous equ	
a) Variable	s b) Equations	c) Unknown	d) Algorithms		
			10.0F		[]
a) 1/2 Q ¹ K	Q-Q'F b) QKQ)-QF c)1/2 K	Q-QF a) 1/2 QF		[]
13. Equilibrium (conditions are obtain energy b) Force	ec) Potential ene	rgy d) Load		
14. In elimination	n approach, which el	lements are elimi	nated from a matrix		[]
a) Force	b) Load	c) Rows and co.	lumns d) Undenn	1ea	. 1
15. The line sepa	rating from the top z	zeros from the fir	st non-zero element	is called	[]
d) Poth Gor	b) Gaussian solu ussian and skyline so	dutions			
16. Frontal metho	od is a of G	aussian eliminat	ion method that uses	the structure of fini	te element problems.
					[]
a) Structure		, 0	d) Data		[]
17. Frontal metho	od is implemented for ral element b) Polyh	nedral element			
c) Octahed	ral element d) Both	Hexahedral and	Polyhedral		
سے کا میں سیکست سے		. 0			[]
a) $U_e = \frac{1}{2} q^2$	$k^{e}qb$) $U_{e}=\frac{1}{2}q^{e}k^{e}q$	c) $U_c = \frac{1}{2} qk^2$	d) $U_e = \frac{1}{2} q^* K$		[]
19. What is the ac	ctual equation of stiff	F/1	c) $K = AE/1$ d)	K=AE/I), ,
<i>a)</i> 1	-1	1 1			1
-1	train energy equation k^eqb) $U_c=\frac{1}{2}q^ck^eq$ ctual equation of stiff b) $K=A$	(-1 J		Sto 10	Non it
20 From where d	loes the global load v	vector F is assem	bled?	ads only	GULV'
Element i	orce vectors only	d point loads	d) Undefined	ads only hi School	of Engineering
Element of Both elem	*	******ALL T	HE BEST****	edupatii Rond, P	rasan am
L) <u>S.</u>		The profits of		PUTTAPARTH Anantapuram	
- /.= //				miaillapuidit	ici (izi) Mil.

Branch: CIVIL

Time: 1:30 Hours

SANSKRITHI SCHOOL OF ENGINEERING, PUTTAPARTHI

IV B. Tech I Semester I Mid-Term Examinations: Descriptive

Sub:Finite Element Method

Sub Code: 15A01701

Max marks: 30

Answer any three questions

1. A Simply supported beam subjected to uniformly distributed load over entire span. Determine the bending moment and deflection at midspan by using Rayleigh-Ritz method and compare with exact solutions.

Deflection and Bending moment at midspan. i)

ii) Compare with exact solutions.

Co 1 L4

2. A Simply supported beam subjected to uniformly distributed load over entire span and it is subjected to a point load at the centre of the span. Calculate the bending moment and deflection at midspan by using Rayleigh-Ritz method and compare with exact solution.

Deflection and Bending moment at midspan.

Compare with exact solutions. ii)

Co 2 L₂

3. The differential equation of a physical phenomenon is given by,

Co₂

 $d^2y/dx^2 + 500 x^2 = 0, 0 \le x \le 1$, Trial function, $y = a_1(x-x^4)$

L5

Boundary conditios are y(0) = 0, y(1) = 0

Calculate the value of the parameter a₁by the following methods:

Point Collocation (ii) Sub domain collocation (iii) Least squares (iv) Galerkin.

(ii) A steel bar of length 800mm is subjected to an axial load of 3 kN. Find the elongation of the bar, neglecting self weight.

Table $E = 2X10^5 \text{N/mm}^2$, $A = 300 \text{ mm}^2$.

4. A thin steel plate of uniform thickness 25mm is subjected to a point load of 420 N at mid depth, The plate is also subjected to self-weight. If Young's modulus, $E=2X10^5 N/mm^2$ and unit weight density. $\rho=0.8 X$ 10⁻⁴N/mm³, calculating the following:

Displacement at each nodal point. (i)

(ii) Stresses in each element. Co₁ L5

Sanskrithi School of Ene Beedupalli Road, Pra

PUTTAPARTHI - 515 7. Anantapuramu (Di) A.P.